Deep learning techniques for transmission line fault classification – A comparative study
Author:
Publisher
Elsevier BV
Subject
General Engineering
Reference36 articles.
1. An intelligent fault detection and classification scheme for distribution lines integrated with distributed generators;Chaitanya;Comput Electr Eng,2018
2. Manohar M, Koley E. SVM based protection scheme for microgrid. In: 2017 int conf intelligent computing instrumentation and control technologies ICICICT 2017; 2018.
3. Tokel HA, Al HR, Alirezaei G, Mathar R. A new approach for machine learning-based fault detection and classification in power systems. In: 2018 IEEE power energy society of innovative smart grid technology conference ISGT 2018; 2018.
4. A new approach for fault classification in microgrids using optimal wavelet functions matching pursuit;Abdelgayed;IEEE Trans Smart Grid,2018
5. Measurement and assessment of power quality characteristics for photovoltaic systems: harmonics, flicker, unbalance, and slow voltage variations;Ortega;Electrical Power Syst Res,2013
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Novel glassbox based explainable boosting machine for fault detection in electrical power transmission system;PLOS ONE;2024-08-28
2. A modified Takagi-Sugeno-Kang neuro-fuzzy network in estimation of shortage faults location and resistance on transmission lines;Engineering Applications of Artificial Intelligence;2024-07
3. Fault detection through discrete wavelet transforms and radial basis function neural network in shunt compensated distribution systems;Engineering Research Express;2024-05-13
4. Functional Electrical Stimulation with Machine Learning for Stroke Prediction and Rehabilitation;2024 International Conference on E-mobility, Power Control and Smart Systems (ICEMPS);2024-04-18
5. Evolving Energy Landscapes: A Comprehensive Analysis of Renewable Power in the 21st Century;2024 International Conference on E-mobility, Power Control and Smart Systems (ICEMPS);2024-04-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3