1. Akram, S.U., Qaiser, T., Graham, S., Kannala, J., Heikkilä, J., Rajpoot, N., 2018. Leveraging unlabeled whole-slide-images for mitosis detection. In: Medical Image Computing and Computer Assisted Intervention (MICCAI) - Workshop on Computational Pathology (COMPAY). 11039 LNCS, pp. 69–77.
2. Arpit, D., Jastrzȩbski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M.S., Maharaj, T., Fischer, A., Courville, A., Bengio, Y., Lacoste-Julien, S., 2017. A closer look at memorization in deep networks. In: Proceedings of the International Conference on Machine Learning (ICML). pp. 1–10.
3. Automated Gleason grading of prostate cancer tissue microarrays via deep learning;Arvaniti;Sci. Rep.,2018
4. Quantifying the scanner-induced domain gap in mitosis detection;Aubreville,2021
5. Quantifying the scanner-induced domain gap in mitosis detection;Aubreville,2021