1. Bowsher, J.E., Yuan, H., Hedlund, L.W., Turkington, T.G., Akabani, G., Badea, A., Kurylo, W.C., Wheeler, C.T., Cofer, G.P. & Dewhirst, M.W., 2004. Utilizing M.R.I. information to estimate F18-FDG distributions in rat flank tumors. IEEE Symposium Conference Record Nuclear Science 2004.. IEEE, pp. 2488–2492.
2. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q. & Wang, M., 2021. Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537.
3. Transunet: Transformers make strong encoders for medical image segmentation;Chen;arXiv Prepr. arXiv,2021
4. Generalization of deep learning models for ultra-low-count amyloid PET/MRI using transfer learning;Chen;Eur. J. Nucl. Med. Mol. Imaging,2020
5. True ultra-low-dose amyloid PET/MRI enhanced with deep learning for clinical interpretation;Chen;Eur. J. Nucl. Med. Mol. Imaging,2021