1. R. Nock, M. Sebban, Advances in adaptive prototype weighting and selection, Artif. Intell. Tools 10 (1–2) (2001), to appear.
2. M. Sebban, R. Nock, Contribution of boosting in wrapper models, Proceedings of the 3rd European Conf. on Principles and Practice of KDD, 1999, pp. 214–222.
3. M. Sebban, R. Nock, Prototype selection as an information-preserving problem, Proceedings of the 17th Int. Conf. on Machine Learning, 2000, pp. 855–862.
4. R. Kohavi, Feature subset selection as search with probabilistic estimates, AAAI Fall Symp. on Relevance, 1994.
5. S.B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De Jong, S. Dzeroski, S.E. Fahlman, D. Fisher, R. Hamann, K. Kaufman, S. Keller, I. Kononenko, J. Kreuziger, R.S. Michalski, T. Mitchell, P. Pachowicz, Y. Reich, H. Vafaie, W. Van de Welde, W. Wenzel, J. Wnek, J. Zhang, The MONK's problems: a performance comparison of different learning algorithms, Technical Report CMU-CS-91-197, Carnegie Mellon University, 1991.