Acoustically Driven Programmable Microfluidics for Biological and Chemical Applications

Author:

Wixforth Achim12

Affiliation:

1. University of Augsburg, Germany

2. Advalytix AG, Brunnthal, Germany

Abstract

A novel approach toward the needs of a versatile chip-based microfluidic system with unique properties and functionality is reviewed. Like for microarrays and in contrast to many existing technologies, the fluid handling is performed on the flat surface of a programmable chip, where fluidic tracks and functional blocks such as valves, dispensers, mixers, and sensing elements are chemically defined using standard lithographic techniques. The actuation of the fluid, the driving and addressing of the functional elements as well as possible sensors are based on electrically excited mechanical surface acoustic waves, propagating along the surface of a chip. Based on this acoustically driven microfluidic technique, a variety of different chips but also lab equipment has been devised, including a chip-based PCR reactor, microarray hybridization chambers, and noninvasive miniature mixers for cuvette and micro titerplate applications.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3