Assessing Near-Infrared Quantum Dots for Deep Tissue, Organ, and Animal Imaging Applications

Author:

Jiang Wen1,Singhal Anupam1,Kim Betty Y.S.1,Zheng Jianing2,Rutka James T.3,Wang Chen2,Chan Warren C.W.1

Affiliation:

1. University of Toronto, Toronto, Ontario, Canada

2. Mount Sinai Hospital, Toronto, Ontario, Canada

3. The Hospital for Sick Children, Toronto, Ontario, Canada

Abstract

Semiconductor quantum dots (Qdots) have emerged as novel ultrasensitive optical probes to target, detect, and image fundamental events occurring within the biological system. In particular, near-infrared (near-IR) Qdots holds great promise as in vivo contrast agents for real-time bioimaging capabilities. In this study, biocompatible near-IR Qdots are used to image organs, tissues, and cells. Compared to visible Qdots, we obtained a significant enhancement in signal detection sensitivity for imaging deep tissues and organs. In addition, biomolecules were used to target these optical contrast agents for multiplexed imaging of cells and organs in vivo. The ability to simultaneously distinguish emission profiles of multiple near-IR Qdots will likely emerge as important tools for addressing fundamental questions in molecular biology and in medical sciences.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Computer Science Applications

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3