Data-Driven optimal shrinkage of singular values under high-dimensional noise with separable covariance structure with application
-
Published:2024-09
Issue:
Volume:
Page:101698
-
ISSN:1063-5203
-
Container-title:Applied and Computational Harmonic Analysis
-
language:en
-
Short-container-title:Applied and Computational Harmonic Analysis
Author:
Su Pei-Chun,
Wu Hau-TiengORCID
Reference68 articles.
1. Sankaraleengam Alagapan, Hae Won Shin, Flavio Fröhlich, and Hau-Tieng Wu. Diffusion geometry approach to efficiently remove electrical stimulation artifacts in intracranial electroencephalography. Journal of neural engineering, 16(3):036010, 2019.
2. Johannes Alt. Singularities of the density of states of random Gram matrices. Electronic Communications in Probability, 22(none):1 – 13, 2017.
3. Johannes Alt, László Erdős, and Torben Krüger. Local law for random Gram matrices. Electronic Journal of Probability, 22(none):1 – 41, 2017.
4. Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random matrices. Number 118. Cambridge university press, 2010.
5. Rasoul Anvari, Mokhtar Mohammadi, and Amin Roshandel Kahoo. Enhancing 3-d seismic data using the t-svd and optimal shrinkage of singular value. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(1):382–388, 2018.