Predicting changes in brain metabolism and progression from mild cognitive impairment to dementia using multitask Deep Learning models and explainable AI
-
Published:2024-08
Issue:
Volume:297
Page:120695
-
ISSN:1053-8119
-
Container-title:NeuroImage
-
language:en
-
Short-container-title:NeuroImage
Author:
García-Gutiérrez FernandoORCID,
Hernández-Lorenzo Laura,
Cabrera-Martín María Nieves,
Matias-Guiu Jordi A.ORCID,
Ayala José L.
Reference73 articles.
1. Monotonic Gaussian process for spatio-temporal disease progression modeling in brain imaging data;Abi Nader;Neuroimage,2020
2. Deep residual learning for neuroimaging: an application to predict progression to Alzheimer’s disease;Abrol;J. Neurosci. Methods,2020
3. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M., 2019. Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp. 2623–2631.
4. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies;Alexander;Am. J. Psychiatry,2002
5. 2023 Alzheimer’s disease facts and figures;Alzheimer’s;Alzheimer’s Dement.,2023