Author:
Timmins Kimberley M.,van der Schaaf Irene C.,Bennink Edwin,Ruigrok Ynte M.,An Xingle,Baumgartner Michael,Bourdon Pascal,De Feo Riccardo,Noto Tommaso Di,Dubost Florian,Fava-Sanches Augusto,Feng Xue,Giroud Corentin,Group Inteneural,Hu Minghui,Jaeger Paul F.,Kaiponen Juhana,Klimont Michał,Li Yuexiang,Li Hongwei,Lin Yi,Loehr Timo,Ma Jun,Maier-Hein Klaus H.,Marie Guillaume,Menze Bjoern,Richiardi Jonas,Rjiba Saifeddine,Shah Dhaval,Shit Suprosanna,Tohka Jussi,Urruty Thierry,Walińska Urszula,Yang Xiaoping,Yang Yunqiao,Yin Yin,Velthuis Birgitta K.,Kuijf Hugo J.
Funder
Guangdong Provincial Applied Science and Technology Research and Development Program
National Natural Science Foundation of China
German Research Foundation
European Social Fund
Academy of Finland
European Research Council
Nederlandse Hartstichting
Subject
Cognitive Neuroscience,Neurology
Reference82 articles.
1. Computerized detection of intracranial aneurysms for three-dimensional MR angiography: feature extraction of small protrusions based on a shape-based difference image technique;Arimura;Med. Phys.,2006
2. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms;Backes;Neurology,2017
3. PHASES score for prediction of intracranial aneurysm growth;Backes;Stroke,2015
4. Retina U-Net for Aneurysm Detection in MR Images;Baumgartner,2020
5. Berrada, L., Zisserman, A., Kumar, M.P., 2018. Smooth Loss Functions for Deep Top-k Classification.