Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis

Author:

Haugg Amelie,Renz Fabian M.,Nicholson Andrew A.,Lor Cindy,Götzendorfer Sebastian J.,Sladky Ronald,Skouras Stavros,McDonald Amalia,Craddock Cameron,Hellrung Lydia,Kirschner Matthias,Herdener Marcus,Koush Yury,Papoutsi Marina,Keynan Jackob,Hendler Talma,Cohen Kadosh Kathrin,Zich Catharina,Kohl Simon H.,Hallschmid Manfred,MacInnes Jeff,Adcock R. Alison,Dickerson Kathryn C.,Chen Nan-Kuei,Young Kymberly,Bodurka Jerzy,Marxen Michael,Yao Shuxia,Becker Benjamin,Auer Tibor,Schweizer Renate,Pamplona Gustavo,Lanius Ruth A.,Emmert Kirsten,Haller Sven,Van De Ville Dimitri,Kim Dong-Youl,Lee Jong-Hwan,Marins Theo,Megumi Fukuda,Sorger Bettina,Kamp Tabea,Liew Sook-Lei,Veit Ralf,Spetter Maartje,Weiskopf Nikolaus,Scharnowski Frank,Steyrl David

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Universität Zürich

Horizon 2020 Framework Programme

Seventh Framework Programme

Foundation for Research in Science and the Humanities

Deutsche Forschungsgemeinschaft

Publisher

Elsevier BV

Subject

Cognitive Neuroscience,Neurology

Reference93 articles.

1. Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning;Alkoby;Neuroscience,2017

2. Open science challenges, benefits and tips in early acreer and beyond;Allen;PLoS Biol.,2019

3. Training efficiency and transfer success in an extended real-time functional MRI neurofeedback training of the somatomotor cortex of healthy subjects;Auer;Front. Hum. Neurosci.,2015

4. A network engineering perspective on probing and perturbing cognition with neurofeedback;Bassett;Ann. N. Y. Acad. Sci.,2017

5. Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: part 2: default mode network -preliminary evidence;Bauer;Psychiatry Res.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3