Author:
Haugg Amelie,Renz Fabian M.,Nicholson Andrew A.,Lor Cindy,Götzendorfer Sebastian J.,Sladky Ronald,Skouras Stavros,McDonald Amalia,Craddock Cameron,Hellrung Lydia,Kirschner Matthias,Herdener Marcus,Koush Yury,Papoutsi Marina,Keynan Jackob,Hendler Talma,Cohen Kadosh Kathrin,Zich Catharina,Kohl Simon H.,Hallschmid Manfred,MacInnes Jeff,Adcock R. Alison,Dickerson Kathryn C.,Chen Nan-Kuei,Young Kymberly,Bodurka Jerzy,Marxen Michael,Yao Shuxia,Becker Benjamin,Auer Tibor,Schweizer Renate,Pamplona Gustavo,Lanius Ruth A.,Emmert Kirsten,Haller Sven,Van De Ville Dimitri,Kim Dong-Youl,Lee Jong-Hwan,Marins Theo,Megumi Fukuda,Sorger Bettina,Kamp Tabea,Liew Sook-Lei,Veit Ralf,Spetter Maartje,Weiskopf Nikolaus,Scharnowski Frank,Steyrl David
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Universität Zürich
Horizon 2020 Framework Programme
Seventh Framework Programme
Foundation for Research in Science and the Humanities
Deutsche Forschungsgemeinschaft
Subject
Cognitive Neuroscience,Neurology
Reference93 articles.
1. Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning;Alkoby;Neuroscience,2017
2. Open science challenges, benefits and tips in early acreer and beyond;Allen;PLoS Biol.,2019
3. Training efficiency and transfer success in an extended real-time functional MRI neurofeedback training of the somatomotor cortex of healthy subjects;Auer;Front. Hum. Neurosci.,2015
4. A network engineering perspective on probing and perturbing cognition with neurofeedback;Bassett;Ann. N. Y. Acad. Sci.,2017
5. Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: part 2: default mode network -preliminary evidence;Bauer;Psychiatry Res.,2020