A VGGNet-like approach for classifying and segmenting coal dust particles with overlapping regions
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
General Engineering,General Computer Science
Reference41 articles.
1. Machine learning approach for automated coal characterization using scanned electron microscopic images;Alpana;Comput. Ind.,2016
2. Deep reinforcement learning: a brief survey;Arulkumaran;IEEE Signal Process. Mag.,2017
3. SegNet: a deep convolutional encoder decoder architecture for scene segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017
4. Effect of dust dispersion on particle integrity and explosion hazards;Bagaria;J. Loss Prev. Process Ind.,2016
5. Image segmentation method for coal particle size distribution analysis;Bai;Particuology,2021
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Risk assessment model for dust explosion in dust removal pipelines using an attention mechanism-based convolutional neural network;Stochastic Environmental Research and Risk Assessment;2024-08-22
2. A comprehensive evaluation method for dust pollution: Digital image processing and deep learning approach;Journal of Hazardous Materials;2024-08
3. Multimodal knowledge graph construction for risk identification in water diversion projects;Journal of Hydrology;2024-05
4. Handwritten Digital Image Recognition based on Fusion of Multiple Machine Vision Algorithms;Proceedings of the 6th International Conference on Information Technologies and Electrical Engineering;2023-11-03
5. Risk assessment model for dust explosion in dust removal pipelines using an attention mechanism-based convolutional neural network;2023-10-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3