A comparison between the modeling of a reciprocating compressor using artificial neural network and physical model

Author:

Belman-Flores J.M.,Ledesma S.,Barroso-Maldonado J.M.,Navarro-Esbrí J.

Funder

Universitat Jaume I

Directorate of Support to Research and Graduate

Publisher

Elsevier BV

Subject

Mechanical Engineering,Building and Construction

Reference30 articles.

1. Analysis of a variable speed vapor compression system using artificial neural networks;Belman-Flores;Expert Syst. Appl,2013

2. Dynamic simulation of reciprocating refrigeration compressors and experimental validation;Castaing-Lasvignottes;Int. J. Refrigeration,2010

3. Performance of a hermetic reciprocating compressor with propane and mineral oil;Da Riva;Int. J. Refrigeration,2011

4. Object-oriented simulation of reciprocating compressors: numerical verification and experimental comparison;Damle;Int. J. Refrigeration,2011

5. Development of an in-cylinder heat transfer correlation for reciprocating compressors;Disconzi,2012

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Co-optimization method for injection strategy of underground natural gas storage integrating aboveground and underground parts;Gas Science and Engineering;2024-08

2. Prediction of performance parameters of a hermetic reciprocating compressor under different discharge lift limiter heights by machine learning;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-05-05

3. Prediction of performance parameters of a hermetic reciprocating compressor applying an artificial neural network;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-03-04

4. Investigating hermetic reciprocating compressor performance by using various machine learning methods;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-12-29

5. A Literature Review of the Positive Displacement Compressor: Current Challenges and Future Opportunities;Energies;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3