1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X., (2015). TensorFlow: Large-scale machine learning on heterogeneous systems, software available from 〈tensorflow.org〉. URL 〈https://www.tensorflow.org/〉.
2. Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., Bastien, F., Bayer, J., Beliko, A., Belopolsky, A., et al. Theano: A python framework for fast computation of mathematical expressions 472 2016 473.(arXiv:1605.02688.).
3. Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain, A. K., & Zhou, J., (2017). Patient subtyping via time-aware lstm networks. In In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp. 65–74.
4. Biggio, B., Nelson, B., & Laskov, P., Poisoning attacks against support vector machines, arXiv preprint arXiv:1206.6389.
5. Carlini, N., & Wagner, D., Adversarial examples are not easily detected: Bypassing ten detection methods, arXiv preprint arXiv:1705.07263.