Percutaneous Liver Tumour Ablation: Image Guidance, Endpoint Assessment, and Quality Control

Author:

Puijk Robbert S.1,Ruarus Alette H.1,Scheffer Hester J.1,Vroomen Laurien G.P.H.1,van Tilborg Aukje A.J.M.1,de Vries Jan J.J.1,Berger Ferco H.2,van den Tol Petrousjka M.P.3,Meijerink Martijn R.1

Affiliation:

1. Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands

2. Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

3. Department of Surgery, VU University Medical Center, Amsterdam, the Netherlands

Abstract

Liver tumour ablation nowadays represents a routine treatment option for patients with primary and secondary liver tumours. Radiofrequency ablation and microwave ablation are the most widely adopted methods, although novel techniques, such as irreversible electroporation, are quickly working their way up. The percutaneous approach is rapidly gaining popularity because of its minimally invasive character, low complication rate, good efficacy rate, and repeatability. However, matched to partial hepatectomy and open ablations, the issue of ablation site recurrences remains unresolved and necessitates further improvement. For percutaneous liver tumour ablation, several real-time imaging modalities are available to improve tumour visibility, detect surrounding critical structures, guide applicators, monitor treatment effect, and, if necessary, adapt or repeat energy delivery. Known predictors for success are tumour size, location, lesion conspicuity, tumour-free margin, and operator experience. The implementation of reliable endpoints to assess treatment efficacy allows for completion-procedures, either within the same session or within a couple of weeks after the procedure. Although the effect on overall survival may be trivial, (local) progression-free survival will indisputably improve with the implementation of reliable endpoints. This article reviews the available needle navigation techniques, evaluates potential treatment endpoints, and proposes an algorithm for quality control after the procedure.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3