1. Z. Wang, K. Qinami, I.C. Karakozis, K. Genova, P. Nair, K. Hata, O. Russakovsky, Towards fairness in visual recognition: Effective strategies for bias mitigation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8919–8928.
2. A systematic study of the class imbalance problem in convolutional neural networks;Buda,2017
3. Exploratory undersampling for class-imbalance learning;Liu;IEEE Trans. Syst. Man Cybern.,2009
4. Unbiased look at dataset bias;Torralba,2011
5. J. Buolamwini, T. Gebru, Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification, in: Proceedings of the 1st Conference on Fairness, Accountability and Transparency, 2018.