A novel method based on deep transfer unsupervised learning network for bearing fault diagnosis under variable working condition of unequal quantity
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Information Systems and Management,Management Information Systems,Software
Reference34 articles.
1. Multiscale cascading deep belief network for fault identification of rotating machinery under various working conditions;Yan;Knowl.-Based Syst.,2020
2. A novel deep metric learning model for imbalanced fault diagnosis and toward open-set classification;Wang;Knowl.-Based Syst.,2021
3. A novel hybrid method based on KELM with SAPSO for fault diagnosis of rolling bearing under variable operating conditions;Su;Measurement,2021
4. Deep learning and its applications to machine health monitoring;Zhao;Mech. Syst. Signal Process.,2019
5. Federated learning for machinery fault diagnosis with dynamic validation and self-supervision;Zhang;Knowl.-Based Syst.,2021
Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep conditional adversarial subdomain adaptation network for unsupervised mechanical fault diagnosis;Knowledge-Based Systems;2024-09
2. Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery;Engineering Applications of Artificial Intelligence;2024-08
3. The impact of random parameter distribution on RVFL model performance in bearing fault diagnosis;2024-05-06
4. DFSA-DAN: dynamic fusion of statistical metric and adversarial learning for domain adaptation network based intelligent fault diagnosis;Measurement Science and Technology;2024-05-02
5. A deep targeted transfer network with clustering pseudo-label learning for fault diagnosis across different Machines;Mechanical Systems and Signal Processing;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3