Improving trajectory prediction in dynamic multi-agent environment by dropping waypoints
-
Published:2024-09
Issue:
Volume:300
Page:112240
-
ISSN:0950-7051
-
Container-title:Knowledge-Based Systems
-
language:en
-
Short-container-title:Knowledge-Based Systems
Author:
Chib Pranav SinghORCID, Singh PravendraORCID
Reference66 articles.
1. L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, G. Hua, SGCN: Sparse graph convolution network for pedestrian trajectory prediction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8994–9003. 2. A. Mohamed, K. Qian, M. Elhoseiny, C. Claudel, Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 14424–14432. 3. J. Sekhon, C. Fleming, SCAN: A spatial context attentive network for joint multi-agent intent prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 7, 2021, pp. 6119–6127. 4. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, A. Alahi, Social gan: Socially acceptable trajectories with generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2255–2264. 5. Brits: Bidirectional recurrent imputation for time series;Cao;Adv. Neural Inf. Process. Syst.,2018
|
|