1. Algorithmic challenges in ensuring fairness at the time of decision;Salem,2021
2. Assessing classifier fairness with collider bias;Xu,2022
3. S. Hajian, F. Bonchi, C. Castillo, Algorithmic bias: From discrimination discovery to fairness-aware data mining, in: Proceedings of the 22nd ACM SIGKDD International Inproceedings on Knowledge Discovery and Data Mining, 2016, pp. 2125–2126.
4. Z. Li, C. Xu, Discover the unknown biased attribute of an image classifier, in: Proceedings of the IEEE/CVF International Inproceedings on Computer Vision, 2021, pp. 14970–14979.
5. A. Oshingbesan, W.G. Omondi, G.A. Tadesse, C. Cintas, S. Speakman, Beyond Protected Attributes: Disciplined Detection of Systematic Deviations in Data, in: Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS 2022, 2022.