1. Unsupervised deep anomaly detection for medical images using an improved adversarial autoencoder;Zhang;J. Digit. Imaging,2022
2. Industrial anomaly detection: A comparison of unsupervised neural network architectures;Siegel;IEEE Sens. Lett.,2020
3. Detection of geochemical anomalies related to mineralization using the GANomaly network;Luo;Appl. Geochem.,2021
4. K. Leung, C. Leckie, Unsupervised anomaly detection in network intrusion detection using clusters, in: Proceedings of the Twenty-Eighth Australasian Conference on Computer Science-Volume 38, 2005, pp. 333–342.
5. B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen, Deep autoencoding gaussian mixture model for unsupervised anomaly detection, in: International Conference on Learning Representations, 2018.