1. A comprehensive survey on graph anomaly detection with deep learning;Ma,2021
2. A review on outlier/anomaly detection in time series data;Blázquez-García;ACM Comput. Surv.,2021
3. G. Zhang, J. Wu, J. Yang, A. Beheshti, S. Xue, C. Zhou, Q.Z. Sheng, FRAUDRE: Fraud Detection Dual-Resistant to Graph Inconsistency and Imbalance, in: 2021 IEEE International Conference on Data Mining, ICDM, 2021, pp. 867–876, http://dx.doi.org/10.1109/ICDM51629.2021.00098.
4. Unsupervised anomaly detection using generative adversarial networks in H-1-MRS of the brain;Jang;J. Magn. Reson.,2021
5. Deep learning for anomaly detection: A review;Pang;ACM Comput. Surv.,2022