Development of a dynamic machine learning algorithm to predict clinical pregnancy and live birth rate with embryo morphokinetics
Author:
Funder
National Institute of General Medical Sciences
Robert and Janice Mcnair Foundation
Publisher
Elsevier BV
Subject
Obstetrics and Gynecology,Reproductive Medicine,Embryology
Reference60 articles.
1. Selection of high potential embryos using time-lapse imaging: the era of morphokinetics;Herrero;Fertil Steril,2013
2. The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology;Tesarik;Hum Reprod,1999
3. Early embryo cleavage is a strong indicator of embryo quality in human IVF;Lundin;Hum Reprod,2001
4. Early cleavage of human embryos to the two-cell stage. A simple, effective indicator of implantation and pregnancy in intracytoplasmic sperm injection;Isiklar;J Reprod Med,2002
5. Multinucleation in normally fertilized embryos is associated with an accelerated ovulation induction response and lower implantation and pregnancy rates in vitro fertilization-embryo transfer cycles;Jackson;Fertil Steril,1998
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Beyond black-box models: explainable AI for embryo ploidy prediction and patient-centric consultation;Journal of Assisted Reproduction and Genetics;2024-07-04
2. Machine learning in time-lapse imaging to differentiate embryos from young vs old mice;Biology of Reproduction;2024-04-30
3. TPTM-HANN-GA: A Novel Hyperparameter Optimization Framework Integrating the Taguchi Method, an Artificial Neural Network, and a Genetic Algorithm for the Precise Prediction of Cardiovascular Disease Risk;Mathematics;2024-04-25
4. A novel machine-learning framework based on early embryo morphokinetics identifies a feature signature associated with blastocyst development;Journal of Ovarian Research;2024-03-15
5. Utilizing a Two-Stage Taguchi Method and Artificial Neural Network for the Precise Forecasting of Cardiovascular Disease Risk;Bioengineering;2023-11-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3