A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA)
Author:
Publisher
Elsevier BV
Subject
General Chemical Engineering
Reference51 articles.
1. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview
2. Copper and cadmium adsorption on pellets made from fired coal fly ash
3. The removal of heavy metal from aqueous solutions by sawdust adsorption — removal of copper
4. Biosorption of copper(II) ions on Enteromorpha prolifera: Application of response surface methodology (RSM)
5. Copper removal from oil-field brine by coprecipitation
Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Removal of heavy metals using lichen-derived activated carbons: adsorption studies, machine learning, and response surface methodology approaches;International Journal of Environmental Science and Technology;2024-09-09
2. Optimization of Copper Recovery and Fluorine Fixation from Spent Carbon Cathode Reduction Copper Slag by Response Surface Methodology;Journal of Sustainable Metallurgy;2024-09-09
3. Study of factors affecting the magnetic sensing capability of shape memory alloys for non-destructive evaluation of cracks in concrete: Using response surface methodology (RSM) and artificial neural network (ANN) approaches;Heliyon;2024-08
4. Application of Response Surface Methodology and Artificial Neural Network in Removal of Methylene Blue with Olive Pits Activated Carbon;2024-04-18
5. Artificial Intelligence for Predicting the Performance of Adsorption Processes in Wastewater Treatment: A Critical Review;Earth and Environmental Sciences Library;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3