Subject
Metals and Alloys,Computer Networks and Communications,Fluid Flow and Transfer Processes,Hardware and Architecture,Mechanical Engineering,Biomaterials,Civil and Structural Engineering,Electronic, Optical and Magnetic Materials
Reference21 articles.
1. M. Castelluccio, G. Poggi, C. Sansone and L. Verdoliva. 2015. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks, Journal:CoRR, volume: abs/1508.00092. http://arxiv.org/abs/1508.00092
2. Remote sensing scene classification based on convolutional neural networks pre-trained using attention-guided sparse filters;Chen;Remote Sens.,2018
3. F. Chollet. 2016. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 1610.02357. https://arxiv.org/abs/1610.02357
4. E. Flores, M. Zortea, J. Scharcanski. 2019. Dictionaries of deep features for land-use scene classification of very high spatial resolution images. Pattern Recognition, Volume 89, Pages 32-44, ISSN 0031-3203. https://doi.org/10.1016/j.patcog.2018.12.019
5. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 1704.04861. https://arxiv.org/abs/1704.04861
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献