1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). Tensorflow: Large-scale machine learning on heterogeneous systems. http://tensorflow.org/.
2. Population balance model-based hybrid neural network for a pharmaceutical milling process;Akkisetty;J. Pharm. Innov.,2010
3. First-principles prediction of liquid/liquid interfacial tension;Andersson;J. Chem. Theory Comput.,2014
4. Automatic differentiation in machine learning: a survey;Baydin;J. Mach. Learn. Res.,2017
5. Training with noise is equivalent to tikhonov regularization;Bishop;Neural Comput.,1995