1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., Research, G., n.d. Tensorflow: large-scale machine learning on heterogeneous distributed systems.
2. Increasing batch-to-batch reproducibility of CHO-cell cultures using a model predictive control approach;Aehle;Cytotechnology,2012
3. A semi-empirical glycosylation model of a camelid monoclonal antibody under hypothermia cell culture conditions;Aghamohseni;J Ind Microbiol Biotechnol,2017
4. In-line and real-time prediction of recombinant antibody titer by in situ Raman spectroscopy;André;Anal Chim Acta,2015
5. Glycosylation of monoclonal antibody products: current status and future prospects;Batra;Biotechnol Prog,2016