Optimizing SEM parameters for segmentation with AI – Part 1: Generating a training set
-
Published:2024-10
Issue:
Volume:245
Page:113255
-
ISSN:0927-0256
-
Container-title:Computational Materials Science
-
language:en
-
Short-container-title:Computational Materials Science
Author:
Clusiau SabrinaORCID, Piché NicolasORCID, Provencher BenjaminORCID, Strauss MikeORCID, Gauvin Raynald
Reference21 articles.
1. “The quest for quantitative microscopy,” Nat Methods, vol. 9, no. 7, Art. no. 7, Jul. 2012. Doi: 10.1038/nmeth.2102. 2. S. Chapman, “Understanding & Optimising Scanning Electron Microscopy Performance,” Infocus, no. 14, Jun. 2009. Doi: 10.22443/rms.inf.1.45. 3. J. I. Goldstein et al., “Electron Beam–Specimen Interactions,” in Scanning Electron Microscopy and X-ray Microanalysis: Third Edition, J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, and J. R. Michael, Eds., Boston, MA: Springer US, 2003, pp. 61–98. doi: 10.1007/978-1-4615-0215-9_3. 4. Is normalization indispensable for training deep neural network?;Shao;Adv. Neural Inf. Proces. Syst.,2020 5. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool;Taha;BMC Med. Imaging,2015
|
|