Differentially expressed genes in Mycobacterium tuberculosis H37Rv under mild acidic and hypoxic conditions

Author:

Kim Su-Young12,Lee Byung-Soo2,Shin Sung Jae12,Kim Hwa-Jung2,Park Jeong-Kyu32

Affiliation:

1. Infectious Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea

2. Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea

3. Cancer Research Institute, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea

Abstract

The survival mechanism of dormant tubercle bacilli is unknown; however, accumulating evidence indicates that Mycobacterium tuberculosis can survive and persist in hypoxic and mildly acidic microenvironments. Such conditions are found in the acidic vacuoles of macrophages, which M. tuberculosis is known to target. We used DECAL (differential expression using customized amplification library) to identify the genes expressed under acidic and hypoxic conditions, following the cultivation of M. tuberculosis H37Rv at an acidic pH and/or under hypoxic or anoxic conditions in vitro. Of 960 clones analysed, 144 genes, consisting of 71 induced and 8 repressed genes, were identified by sequencing and divided into functional categories to characterize their cellular roles. In general, the genes induced under acidic and hypoxic conditions were involved in the biosynthesis of secondary metabolites (e.g. pks4), lipid metabolism, energy production (e.g. pckA) and cell wall biogenesis (e.g. Rv0696 and plcB). The combination of genes identified may explain the energy processing and energy storage of M. tuberculosis during latent infection. These findings not only enhance our understanding of the mechanism of dormancy, but they also may be useful in the design of therapeutic tools and vaccines for latent tuberculosis.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3