Affiliation:
1. Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
2. Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
Abstract
Streptococcus pneumoniae
,
S. pyogenes
(Group A
Streptococcus
; GAS) and
S. agalactiae
(Group B
Streptococcus
; GBS) are major aetiological agents of diseases in humans. The cellular membrane, a crucial site in host–pathogen interactions, is poorly characterized in streptococci. Moreover, little is known about whether or how environmental conditions influence their lipid compositions. Using normal phase liquid chromatography coupled with electrospray ionization MS, we characterized the phospholipids and glycolipids of
S. pneumoniae
, GAS and GBS in routine undefined laboratory medium, streptococcal defined medium and, in order to mimic the host environment, defined medium supplemented with human serum. In human serum-supplemented medium, all three streptococcal species synthesize phosphatidylcholine (PC), a zwitterionic phospholipid commonly found in eukaryotes but relatively rare in bacteria. We previously reported that
S. pneumoniae
utilizes the glycerophosphocholine (GPC) biosynthetic pathway to synthesize PC. Through substrate tracing experiments, we confirm that GAS and GBS scavenge lysoPC, a major metabolite in human serum, thereby using an abbreviated GPC pathway for PC biosynthesis. Furthermore, we found that plasmanyl-PC is uniquely present in the GBS membrane during growth with human serum, suggesting GBS possesses unusual membrane biochemical or biophysical properties. In summary, we report cellular lipid remodelling by the major pathogenic streptococci in response to metabolites present in human serum.
Funder
National Institute of Allergy and Infectious Diseases
National Institute of General Medical Sciences
Cecil H. and Ida Green Chair in Systems Biology Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献