The serotype a-EmaA adhesin of Aggregatibacter actinomycetemcomitans does not require O-PS synthesis for collagen binding activity

Author:

Tang-Siegel Gaoyan G.1ORCID,Danforth David R.2ORCID,Tristano Jake2,Ruiz Teresa1,Mintz Keith P.2

Affiliation:

1. Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA

2. Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA

Abstract

Aggregatibacter actinomycetemcomitans , a causative agent of periodontitis and non-oral diseases, synthesizes a trimeric extracellular matrix protein adhesin A (EmaA) that mediates collagen binding and biofilm formation. EmaA is found as two molecular forms, which correlate with the serotype of the bacterium. The canonical protein (b-EmaA), associated with serotypes b and c, has a monomeric molecular mass of 202 kDa. The collagen binding activity of b-EmaA is dependent on the presence of O-polysaccharide (O-PS), whereas biofilm activity is independent of O-PS synthesis. The EmaA associated with serotype a strains (a-EmaA) has a monomeric molecular mass of 173 kDa and differs in the amino acid sequence of the functional domain of the protein. In this study, a-emaA was confirmed to encode a protein that forms antenna-like appendages on the surface of the bacterium, which were found to be important for both collagen binding and biofilm formation. In an O-PS-deficient talose biosynthetic (tld) mutant strain, the electrophoretic mobility of the a-EmaA monomers was altered and the amount of membrane-associated EmaA was decreased when compared to the parent strain. The mass of biofilm formed remained unchanged. Interestingly, the collagen binding activity of the mutant strain was similar to the activity associated with the parent strain, which differs from that observed with the canonical b-EmaA isoform. These data suggest that the properties of the a-EmaA isoform are like those of b-EmaA, with the exception that collagen binding activity is independent of the presence or absence of the O-PS.

Funder

National Institute of Dental and Craniofacial Research

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3