Genome analysis and phenotypic characterization of Halomonas hibernica isolated from a traditional food process with novel quorum quenching and catalase activities

Author:

Woods David F.1ORCID,Kozak Iwona M.1ORCID,O'Gara Fergal123ORCID

Affiliation:

1. BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland

2. Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia

3. Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland

Abstract

Traditional food processes can utilize bacteria to promote positive organoleptic qualities and increase shelf life. Wiltshire curing has a vital bacterial component that has not been fully investigated from a microbial perspective. During the investigation of a Wiltshire brine, a culturable novel bacterium of the genus Halomonas was identified by 16S rRNA gene (MN822133) sequencing and analysis. The isolate was confirmed as representing a novel species (Halomonas hibernica B1.N12) using a housekeeping (HK) gene phylogenetic tree reconstruction with the selected genes 16S rRNA, 23S rRNA, atpA, gyrB, rpoD and secA. The genome of the new isolate was sequenced and annotated and comparative genome analysis was conducted. Functional analysis revealed that the isolate has a unique phenotypic signature including high salt tolerance, a wide temperature growth range and substrate metabolism. Phenotypic and biochemical profiling demonstrated that H. hibernica B1.N12 possesses strong catalase activity which is an important feature for an industrial food processing bacterium, as it can promote an increased product shelf life and improve organoleptic qualities. Moreover, H. hibernica exhibits biocontrol properties based on its quorum quenching capabilities. Our work on this novel isolate advances knowledge on potential mechanistic interplays operating in complex microbial communities that mediate traditional food processes.

Funder

Science Foundation Ireland

Enterprise Ireland

Health Research Board

Department of Agriculture, Food and the Marine, Ireland

European Commission

Irish Research Council for Science, Engineering and Technology

Cystic Fibrosis Foundation

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3