Looking through the FOG: microbiome characterization and lipolytic bacteria isolation from a fatberg site

Author:

Court Elizabeth K.12ORCID,Chaudhuri Roy R.3ORCID,Kapoore Rahul V.45ORCID,Villa Raffaella X.6ORCID,Pandhal Jagroop5,Biggs Catherine A.7,Stafford Graham P.12

Affiliation:

1. Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK

2. Integrated BioScience Group, School of Clinical Dentistry, University of Sheffield, Sheffield, UK

3. Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK

4. Department of Biosciences, College of Science, Swansea University, Swansea, UK

5. Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK

6. Department of Engineering and Sustainable Development, De Montfort University, Leicester, UK

7. Environmental Engineering Group, School of Engineering, Newcastle University, Newcastle, UK

Abstract

Sewer systems are complex physical, chemical and microbial ecosystems where fats, oils and grease (FOG) present a major problem for sewer management. Their accumulation can lead to blockages (‘Fatbergs’), sewer overflows and disruption of downstream wastewater treatment. Further advancements of biological FOG treatments need to be tailored to degrade the FOG, and operate successfully within the sewer environment. In this study we developed a pipeline for isolation of lipolytic strains directly from two FOG blockage sites in the UK, and isolated a range of highly lipolytic bacteria. We selected the five most lipolytic strains using Rhodamine B agar plates and pNP-Fatty acid substrates, with two Serratia spp., two Klebsiella spp. and an environmental Acinetobacter strain that all have the capacity to grow on FOG-based carbon sources. Their genome sequences identified the genetic capacity for fatty acid harvesting (lipases), catabolism and utilization (Fad genes). Furthermore, we performed a preliminary molecular characterization of the microbial community at these sites, showing a diverse community of environmental bacteria at each site, but which did include evidence of sequences related to our isolates. This study provides proof of concept to isolation strategies targeting Fatberg sites to yield candidate strains with bioremediation potential for FOG in the wastewater network. Our work sets the foundation for development of novel bioadditions tailored to the environment with non-pathogenic Acinetobacter identified as a candidate for this purpose.

Funder

Engineering and Physical Sciences Research Council

University of Sheffield IIKE

Biotechnology and Biological Sciences Research Council

Publisher

Microbiology Society

Subject

Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microbial Musings – December 2021;Microbiology;2021-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3