High persister cell formation by clinical Staphylococcus aureus strains belonging to clonal complex 30

Author:

Liu Liping1ORCID,Wang Ying1,Bojer Martin Saxtorph1ORCID,Andersen Paal Skytt21ORCID,Ingmer Hanne1ORCID

Affiliation:

1. Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark

2. Microbial Pathogenesis and Host Susceptibility, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 København S, Denmark

Abstract

Bacterial persisters form a subpopulation of cells that survive lethal concentrations of antibiotics without being genetically different from the susceptible population. They are generally considered to be phenotypic variants that spontaneously have entered a dormant state with low ATP levels or reduced membrane potential. In Staphylococcus aureus , a serious opportunistic human pathogen, persisters are believed to contribute to chronic infections that are a major global healthcare problem. While S. aureus persisters have mostly been studied in laboratory strains, we have here investigated the ability of clinical strains to form persisters. For 44 clinical strains belonging to the major clonal complexes CC5, CC8, CC30 or CC45, we examined persister cell formation in stationary phase when exposed to 100 times the MIC of ciprofloxacin, an antibiotic that targets DNA replication. We find that while all strains are able to form persisters, those belonging to CC30 displayed on average 100-fold higher persister cell frequencies when compared to strains of other CCs. Importantly, there was no correlation between persister formation and the cellular ATP content of the individual strains, but the group of CC30 strains displayed slightly lower membrane potential compared to the non-CC30 group. CC30 strains have previously been associated with chronic and reoccuring infections and we hypothesize that there could be a correlation between lineage-specific characteristics displayed via in vitro persister assays and the observed clinical spectrum of disease.

Funder

Danmarks Grundforskningsfond

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3