Affiliation:
1. BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota — Twin Cities, St. Paul, MN 55108, USA
Abstract
Neutrophilic Fe(II) oxidizing bacteria play an important role in biogeochemical processes and have also received attention for multiple technological applications. These micro-organisms are thought to couple their metabolism with extracellular electron transfer (EET) while oxidizing Fe(II) as electron donor outside the cell. Sideroxydans lithotrophicus ES-1 is a freshwater chemolithoautotrophic Fe(II) oxidizing bacterium that is challenging to culture and not yet genetically tractable. Analysis of the S. lithotrophicus ES-1 genome predicts multiple EET pathways, which are proposed to be involved in Fe(II) oxidation, but not yet validated. Here we expressed components of two of the proposed EET pathways, including the Mto and Slit_0867–0870 PCC3 pathways, from S. lithotrophicus ES-1 into
Aeromonas hydrophila
, an established model EET organism. We demonstrate that combinations of putative inner membrane and periplasmic components from the Mto and Slit_0867–0870 PCC3 pathways partially complemented EET activity in
Aeromonas
mutants lacking native components. Our results provide evidence for electron transfer functionality and interactions of inner membrane and periplasmic components from the Mto and Slit_0867–0870 PCC3 pathways. Based on these findings, we suggest that EET in S. lithotrophicus ES-1 could be more complicated than previously considered and raises questions regarding directionality of these electron transfer pathways.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献