Flagellin O-linked glycans are required for the interactions between Campylobacter jejuni and Acanthamoebae castellanii

Author:

Nasher Fauzy1ORCID,Wren Brendan W.1ORCID

Affiliation:

1. London School of Hygiene and Tropical Medicine, London, UK

Abstract

The predation and engulfment of bacteria by Acanthamoebae facilitates intimate interactions between host and prey. This process plays an important and underestimated role in the physiology, ecology and evolution of pathogenic bacteria. Acanthamoebae species can be reservoirs for many important human pathogens including Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne enteritis worldwide, despite being a microaerophile that is incapable of withstanding atmospheric levels of oxygen long-term. The persistence and transmission of this major pathogen in the natural environment outside its avian and mammalian hosts is not fully understood. Recent evidence has provided insight into the relationship of C. jejuni and Acanthamoebae spp. where Acanthamoebae are a transient host for this pathogen. Mutations to the flagella components were shown to affect C. jejuni–A. castellanii interactions. Here, we show that the motility function of flagella is not a prerequisite for C. jejuni–A. castellanii interactions and that specific O-linked glycan modifications of the C. jejuni major flagellin, FlaA, are important for the recognition, interaction and phagocytosis by A. castellanii. Substitution of the O-linked glycosylated serine 415 and threonine 477 with alanine within FlaA abolished C. jejuni interactions with A. castellanii and these mutants were indistinguishable from a ΔflaA mutant. By contrast, mutation to serine 405 did not affect C. jejuni 11168H and A. castellanii interactions. Given the abundance of flagella glycosylation among clinically important pathogens, our observations may have a wider implication for understanding host–pathogen interactions.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3