A systems approach to decipher a role of transcription factor RegX3 in the adaptation of Mycobacterium tuberculosis to hypoxic stress

Author:

Mahatha Amar Chandra1,Banerjee Srijon Kaushik21,Ghosh Abhirupa3,Lata Suruchi1,Saha Sudipto3,Basu Joyoti1,Kundu Manikuntala1ORCID

Affiliation:

1. Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India

2. Present address: Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15217, USA

3. Division of Bioinformatics, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India

Abstract

Two-component systems (TCSs) are required for the ability of Mycobacterium tuberculosis to respond to stress. The paired TCS, SenX3-RegX3 is known to respond to phosphate starvation and acid stress. The other stress conditions under which RegX3 is required for M. tuberculosis to mount an appropriate response, remain incompletely understood. Here we have employed genome-wide microarray profiling to compare gene expression in a ΔregX3 mutant with the wild-type under phosphate stress, in order to gain information on the probable RegX3 regulon. We pulled out a set of 128 hypoxia-associated genes, which could potentially be regulated by RegX3, by overlapping the gene set downregulated at least twofold in ΔregX3 with the gene set reported in the literature to be associated with the response to hypoxia. We identified potential RegX3 binding inverted repeats at the loci of 41 of these genes, in silico. We also observed that ΔregX3 was attenuated in terms of its ability to withstand hypoxia, and this was reversed upon complementation with regX3, corroborating a role of RegX3 in the response of M. tuberculosis to hypoxia. We validated the binding of RegX3 at the upstream regions of a selected set of these genes. Electrophoretic mobility shift assays (EMSAs) confirmed that RegX3 binds to the upstream regions of the hypoxia-associated genes Rv3334, whiB7, Rv0195, Rv0196 and Rv1960c. Gene expression analyses showed that the expression of these genes is regulated by RegX3 under hypoxia. We also show that the expression of whiB7, Rv3334 and Rv0195 in macrophage-grown M. tuberculosis , is dependent on RegX3. Finally, we show that attenuation of survival of ΔregX3 under hypoxia is partly reversed upon overexpression of either Rv0195 or Rv3334, suggesting that the RegX3-Rv0195 and the RegX3-Rv3334 axis are involved in the adaptation of M. tuberculosis to a hypoxic environment.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

SERB, Government of India

Council of Scientific & Industrial Research, India

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3