A novel proteinaceous molecule produced by Lysinibacillus sp. OF-1 depends on the Ami oligopeptide transporter to kill Streptococcus pneumoniae

Author:

Hauge Ingvild Hals1,Sandegren Vilde1,Winther Anja Ruud1,Bøe Cathrine Arnason2,Salehian Zhian1,Håvarstein Leiv Sigve1,Kjos Morten1,Straume Daniel1ORCID

Affiliation:

1. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430 Ås, Norway

2. Department of Molecular Biology, Norwegian Veterinary Institute, 1433 Ås, Norway

Abstract

Infections caused by antibiotic-resistant Streptococcus pneumoniae are of growing concern for healthcare systems, which need new treatment options. Screening microorganisms in terrestrial environments has proved successful for discovering antibiotics, while production of antimicrobials by marine microorganisms remains underexplored. Here we have screened microorganisms sampled from the Oslo Fjord in Norway for production of molecules that prevent the human pathogen S. pneumoniae from growing. A bacterium belonging to the genus Lysinibacillus was identified. We show that this bacterium produces a molecule that kills a wide range of streptococcal species. Genome mining in BAGEL4 and AntiSmash suggested that it was a new antimicrobial compound, and we therefore named it lysinicin OF. The compound was resistant to heat (100 °C) and polymyxin acylase but susceptible to proteinase K, showing that it is of proteinaceous nature, but most probably not a lipopeptide. S. pneumoniae became resistant to lysinicin OF by obtaining suppressor mutations in the ami locus, which encodes the AmiACDEF oligo peptide transporter. We created ΔamiC and ΔamiEF mutants to show that pneumococci expressing a compromised Ami system were resistant to lysinicin OF. Furthermore, by creating mutants expressing an intact but inactive Ami system (AmiED184A and AmiFD175A) we could conclude that the lysinicin OF activity depended on the active form (ATP-hydrolysing) of the Ami system. Microscopic imaging and fluorescent labelling of DNA showed that S. pneumoniae treated with lysinicin OF had an average reduced cell size with condensed DNA nucleoid, while the integrity of the cell membrane remained intact. The characteristics and possible mode of action of lysinicin OF are discussed.

Funder

Norges Forskningsråd

Publisher

Microbiology Society

Subject

Microbiology

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3