Ruminococcus bromii enables the growth of proximal Bacteroides thetaiotaomicron by releasing glucose during starch degradation

Author:

Rangarajan Aathmaja Anandhi1ORCID,Chia Hannah E.2ORCID,Azaldegui Christopher A.2ORCID,Olszewski Monica H.1,Pereira Gabriel V.3,Koropatkin Nicole M.3ORCID,Biteen Julie S.21ORCID

Affiliation:

1. Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA

2. Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA

3. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA

Abstract

Complex carbohydrates shape the gut microbiota, and the collective fermentation of resistant starch by gut microbes positively affects human health through enhanced butyrate production. The keystone species Ruminococcus bromii (Rb) is a specialist in degrading resistant starch; its degradation products are used by other bacteria including Bacteroides thetaiotaomicron (Bt). We analysed the metabolic and spatial relationships between Rb and Bt during potato starch degradation and found that Bt utilizes glucose that is released from Rb upon degradation of resistant potato starch and soluble potato amylopectin. Additionally, we found that Rb produces a halo of glucose around it when grown on solid media containing potato amylopectin and that Bt cells deficient for growth on potato amylopectin (∆sus Bt) can grow within the halo. Furthermore, when these ∆sus Bt cells grow within this glucose halo, they have an elongated cell morphology. This long-cell phenotype depends on the glucose concentration in the solid media: longer Bt cells are formed at higher glucose concentrations. Together, our results indicate that starch degradation by Rb cross-feeds other bacteria in the surrounding region by releasing glucose. Our results also elucidate the adaptive morphology of Bt cells under different nutrient and physiological conditions.

Funder

Life Sciences Division, Army Research Office

Publisher

Microbiology Society

Subject

Microbiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3