Reclassification of the biocontrol agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species

Author:

Mullins Alex J.1ORCID,Li Yinshui2,Qin Lu2ORCID,Hu Xiaojia2,Xie Lihua2,Gu Chiming2,Mahenthiralingam Eshwar1ORCID,Liao Xing2,Webster Gordon1ORCID

Affiliation:

1. Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK

2. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China

Abstract

The genomes of two historical Bacillus species strains isolated from the roots of oilseed rape and used routinely in PR China as biocontrol agents to suppress Sclerotinia disease were sequenced. Average nucleotide identity (ANI) and digital DNA–DNA hybridization analyses demonstrated that they were originally misclassified as Bacillus subtilis and now belong to the bacterial species Bacillus velezensis . A broader ANI analysis of available Bacillus genomes identified 292 B. velezensis genomes that were then subjected to core gene analysis and phylogenomics. Prediction and dereplication of specialized metabolite biosynthetic gene clusters (BGCs) defined the prevalence of multiple antimicrobial-associated BGCs and highlighted the natural product potential of B. velezensis . By defining the core and accessory antimicrobial biosynthetic capacity of the species, we offer an in-depth understanding of B. velezensis natural product capacity to facilitate the selection and testing of B. velezensis strains for use as biological control agents.

Funder

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program

Biotechnology and Biological Sciences Research Council

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3