Biochemical and functional characterization of the SMC holocomplex from Mycobacterium smegmatis

Author:

Pradhan Suchitra12ORCID,K. Shwetha2,Kumari Pratibha12ORCID,Kumar Ravi21ORCID

Affiliation:

1. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

2. Department of Molecular Nutrition, CSIR – Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India

Abstract

Multi-subunit SMC complexes are required to perform essential functions, such as chromosome compaction, segregation and DNA repair, from bacteria to humans. Prokaryotic SMC proteins form complexes with two non-SMC subunits, ScpA and ScpB, to condense the chromosome. The mutants of both scpa and scpb genes in Bacillus subtilis have been shown to display characteristic phenotypes such as growth defects and increased frequency of anucleate cells. Here, we studied the function of the Smc-ScpAB complex from Mycobacterium smegmatis . We observed no significant growth difference between the scpb null mutant and wild-type M. smegmatis under both standard and stress conditions. Furthermore, we characterized the Smc-ScpAB holocomplex from M. smegmatis . The MsSMC consists of the dimerization hinge and ATPase head domains connected by long coiled-coils. The MsSMC interacts with two non-SMC proteins, ScpA and ScpB, and the resulting holocomplex binds to different DNA substrates independent of ATP. The Smc-ScpAB complex showed DNA-stimulated ATPase activity in the presence of ssDNA. A cytological profiling assay revealed that upon overexpression the Smc-ScpAB ternary complex compacts the decondensed nucleoid of rifampicin-treated wild-type and null mukb mutant of Escherichia coli in vivo. Together, our study suggests that M. smegmatis has a functional Smc-ScpAB complex capable of DNA binding and condensation. Based on our observations, we speculate that the presence of alternative SMCs such as MksB or other SMC homologues might have rescued the scpb mutant phenotype in M. smegmatis .

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3