Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD–ACE2 receptor interaction

Author:

Lin Han-Xin1,Feng Yan1,Wong Gillian1,Wang Liping2,Li Bei1,Zhao Xuesen1,Li Yan3,Smaill Fiona1,Zhang Chengsheng1

Affiliation:

1. Department of Pathology and Molecular Medicine, McMaster University and Department of Microbiology, St Joseph's Healthcare, Hamilton, ON L8N 4A6, Canada

2. Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA

3. National Microbiology Laboratory, Canadian Science Center for Human and Animal Health, Winnipeg, MB R3E 3R2, Canada

Abstract

Human coronavirus NL63 (NL63), a member of the group I coronaviruses, may cause acute respiratory diseases in young children and immunocompromised adults. Like severe acute respiratory syndrome coronavirus (SARS-CoV), NL63 also employs the human angiotensin-converting enzyme 2 (hACE2) receptor for cellular entry. To identify residues in the spike protein of NL63 that are important for hACE2 binding, this study first generated a series of S1-truncated variants, examined their associations with the hACE2 receptor and subsequently mapped a minimal receptor-binding domain (RBD) that consisted of 141 residues (aa 476–616) towards the C terminus of the S1 domain. The data also demonstrated that the NL63 RBD bound to hACE2 more efficiently than its full-length counterpart and had a binding efficiency comparable to the S1 or RBD of SARS-CoV. A further series of RBD variants was generated using site-directed mutagenesis and random mutant library screening assays, and identified 15 residues (C497, Y498, V499, C500, K501, R518, R530, V531, G534, G537, D538, S540, E582, W585 and T591) that appeared to be critical for the RBD–hACE2 association. These critical residues clustered in three separate regions (designated RI, RII and RIII) inside the RBD, which may represent three receptor-binding sites. These results may help to delineate the molecular interactions between the S protein of NL63 and the hACE2 receptor, and may also enhance our understanding of the pathogenesis of NL63 and SARS-CoV.

Publisher

Microbiology Society

Subject

Virology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3