A Mechanism for Production of Hydroxyl Radicals by the Brown-Rot Fungus Coniophora Puteana: Fe(III) Reduction by Cellobiose Dehydrogenase and Fe(II) Oxidation at a Distance from the Hyphae

Author:

Hyde Simon M.1,Wood Paul M.

Affiliation:

1. Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK

Abstract

In timber infested by brown-rot fungi, a rapid loss of strength is attributed to production of hydroxyl radicals (HO.). The hydroxyl radicals are produced by the Fenton reaction [Fe(II)/H2O2], but the pathways leading to Fe(II) and H2O2 have remained unclear. Cellobiose dehydrogenase, purified from cultures of Coniophora puteana, has been shown to couple oxidation of cellodextrins to conversion of Fe(III) to Fe(II). Two characteristics of brown rot are release of oxalic acid and lowering of the local pH, often to about pH 2. Modelling of Fe(II) speciation in the presence of oxalate has revealed that Fe(II)-oxalate complexes are important at pH 4-5, but at pH 2 almost all Fe(II) is in an uncomplexed state which reacts very slowly with dioxygen. Diffusion of Fe(II) away from the hyphae will promote conversion to Fe(II)-oxalate and autoxidation with H2O2 as product. Thus the critical Fe(II)/H2O2 combination will be generated at a distance, enabling hydroxyl radicals to be formed without damage to the hyphae.

Publisher

Microbiology Society

Subject

Microbiology

Reference51 articles.

1. The cellobiose-oxidizing enzymes CBQ and CbO as related to lignin and cellulose degradation - a review.;Ander;FEMS Microbiol Rev,1994

2. Lignin degradation and utilization by microorganisms.;Ander;Prog Ind Microbiol,1978

3. Hydroxyl radical activity in brown rot fungi studied by a new chemiluminescence method.;Backa;Holzforschung,1992

4. Purification and characterization of cellobiose dehydrogenase: a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerocbaete chrysosporium.;Bao;Arch Biochem Biophys,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3