Transcription and transcript processing in the sdh CDAB-sucABCD operon of Escherichia coli

Author:

Cunningham Louise1,Guest John R.1

Affiliation:

1. The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of SheffieldWestern Bank, Sheffield S10 2TNUK

Abstract

The genes encoding succinate dehydrogenase (sdhCDAB), the specific components of the 2-oxoglutarate dehydrogenase complex (ODH, E1o and E2o; sucAB) and succinyl-CoA synthetase (sucCD) form a cluster containing two promoters at 16 · 3 min in the chromosome of Escherichia coli: Psdh sdhCDAB-Psuc sucAB-sucCD. The gene encoding the lipoamide dehydrogenase component of both the 2-oxoglutarate and pyruvate dehydrogenase complexes (E3; IpdA) is the distal gene of another cluster containing two promoters located at 2 · 7 min: Ppdh pdhR-aceEF-PIpd IpdA. The responses of the suc and Ipd promoters to different environmental conditions and to regulator defects were investigated with appropriate IacZ fusions, in order to understand how expression of the sucAB genes is co-regulated with other genes in the sdhCDAB-sucABCD cluster and with IpdA expression. Expression from the suc promoter was repressed by IHF and partially activated by s38 but it was not regulated by ArcA, FNR, CRP, FruR or Fis, and not repressed by glucose or anaerobiosis, indicating that the well-established catabolite and anaerobic repression of ODH synthesis is imposed elsewhere. In contrast, the Ipd promoter was repressed by both glucose (via a CRP-independent mechanism) and anaerobiosis (mediated by ArcA), and activated by Fis, but it was not regulated by FNR, FruR, IHF or s38. These observations support the view that transcription of the sucABCD genes is primarily initiated and regulated at the upstream sdh promoter, and that the Ipd promoter is independently co-regulated with Psdh (primarily by ArcA-mediated repression) rather than with Psuc suc Direct evidence for co-transcription of the entire sdhCDAB-sucABCD region from Psdh was obtained by detecting a 10 kb transcript in rnc and rne mutants, but not in the parental strains. Three RNaseIII-specific processing sites, which contribute to the extreme instability of the readthrough transcript, were identified in the sdhCDAB-sucABCD intergenic region. Other sites of endonuclease processing were located by interpreting the patterns of transcript subfragments observed in Northern blotting.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3