Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plasmid RP4 and sequence analysis

Author:

Yeo Chew Chieng1,Tham Jill Maelan2,Yap Melvyn Wee-Ching2,Poh Chit Laa21

Affiliation:

1. Department of Microbiology, Faculty of Medicine, National University of Singapore, Lower Kent Ridge Road, Singapore 119260

2. Bioscience Centre, School of Biological Sciences, National University of Singapore, Lower Kent Ridge Road, Singapore 119260

Abstract

Summary: Pseudomonas alcaligenes NCIB 9867 (strain P25X), which grows on 2,5-xylenol and harbours the plasmid RP4, was mated with a plasmid-free derivative of Pseudomonas putida NCIB 9869, strain RA713, which cannot grow on 2,5-xylenol. Some RA713 transconjugants, initially selected on 2,5-xylenol, were found to carry RP4 plasmids that had acquired additional fragments (designated XIn) which ranged in size from 2 kb to approximately 26 kb. Instability of DNA inserts in RP4::XIn hybrid plasmids was observed. The smallest insert present in a stable RP4::XIn6 hybrid plasmid, termed XIn6, yielded multiple bands when it was used as a probe with digested P25X chromosomal DNA. Sequence analysis of XIn6 led to the discovery of an open reading frame with homology to the maturases of group II introns. The XIn6 insert also exhibited several features characteristic of a group II intron. These included the presence of the consensus sequence GUGYG at the 5′ end and RAY at the 3′ end of the intron. RNA secondary structure modelling of XIn6 also revealed the presence of perfectly conserved domains V and VI. Differences were detected in the XIn6 hybridization profiles of several P25X catabolic mutants that have lost the ability to grow on 2,5-xylenol. In these mutants the loss of 2,5-xylenol degradative ability could be due to genome rearrangements mediated by sequences related to the XIn6 group II intron. This is the first reported group II intron isolated from Pseudomonas spp. and the first time that the mobility of a bacterial group II intron has been demonstrated.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3