A novel regulatory switch mediated by the FNR-like protein of Lactobacillus casei

Author:

Gostick Dominic O.1,Green Jeffrey1,Irvine Alistair S.1,Gasson Michael J.2,Guest John R.1

Affiliation:

1. The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank,Sheffield S10 2TN,UK

2. Institute of Food Research, Norwich Laboratory, Colney Research Park,Colney, Norwich NR4 7UA,UK

Abstract

FNR (regulator for fumarate and nitrate reduction) and CRP (cAMP receptor protein) are global regulators which regulate the transcription of overlapping modulons of target genes in response to anaerobiosis and carbon source in Escherichia coli. An ORF, designated flp because it encodes an FNR-like protein of the FNR-CRP family, has been found in Lactobacillus casei. The product of the flp coding region (FLP) was overproduced in E. coli, purified and crystallized. FLP is a homodimeric protein in which each subunit can form an intramolecular disulphide bond. The isolated protein also contains non-stoichiometric amounts of Cu and Zn. Although the DNA recognition helix of FLP resembles that of FNR, the flp gene failed to complement the anaerobic respiratory deficiency of an fnr mutant when expressed in E. coli and it neither activated nor interfered with transcription from FNR- or CRP-dependent promoters in E. coli. Site-specific DNA binding by oxidized FLP (the form containing intrasubunit disulphide bonds) was abolished by reduction. The interconversion between disulphide and dithiol forms thus provides the basis for a novel redox-mediated transcriptional switch. Two non-identical FLP-binding sites, distinct from FNR- and CRP-binding sites, were identified in the meIR region of E. coli by gel-retardation analysis. A further eight FLP-binding sites were selected from a random library. A synthetic oligonucleotide conforming to a putative FLP site consensus, CA/cTGA-N4-TCAG/TG (the most significant bases are underlined), was retarded by FLP. Functional tests showed that FLP represses the aerobic transcription of a semi-synthetic promoter in E. coli. A C5S variant of FLP lacking the ability to form intramolecular disulphide bonds was unable to bind to FLP sites and failed to repress transcription in vivo.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3