Affiliation:
1. Biochemistry and Molecular Biology Unit, School of Dental Science, The University of Melbourne, 711, Elizabeth Street, Melbourne, Victoria 3000, Australia
Abstract
Summary: Porphyromonas gingivalis has been associated with the development of adult periodontitis and cysteine proteinases with trypsin-like specificity have been implicated as major virulence factors. We have extracted the major cell-associated trypsin-like proteolytic activity of P. gingivalis W50 using mild sonication. Anion-exchange and gel-filtration FPLC of the sonicate revealed that Arg- and Lys-specific proteinase activity was associated with a 300 kDa complex which could be dissociated into seven bands (48, 45, 44, 39, 27, 17 and 15 kDa) by SDS-PAGE with the 44 kDa band containing two different proteins as shown by N-terminal sequence analysis. On further chromatography of the 300 kDa complex on Arg-Sepharose the majority of the complex eluted from the affinity column as an undissociated complex. However, a small amount dissociated such that the Lys- and Arg-specific activities could be separated by eluting first with lysine then arginine, respectively. The 45 kDa protein of the complex was purified by further anion-exchange FPLC in the presence of octyl–D-glucopyranoside and was shown to be an Arg-specific, thiol-activated, calcium-stabilized cysteine proteinase. The 48 kDa protein was also further purified in a similar fashion and shown to be a Lys-specific cysteine proteinase that was not inhibited by EDTA. The two 44 kDa and the 39, 27, 17 and 15 kDa proteins of the complex exhibit amino acid sequence homology and are proposed to be haemagglutinins/adhesins. The 45 kDa Arg-specific proteinase and one of the 44 kDa adhesins as well as the 15, 17 and 27 kDa adhesins are processed from the single polyprotein encoded by the gene designated prtK, with all proteins preceded by an Arg or Lys residue within the polyprotein. Similarly, the 48 kDa Lys-specific proteinase, the 39 and 15 kDa adhesins as well as the other 44 kDa adhesin of the 300 kDa complex are encoded by a single gene designated prtK, with all proteins preceded by an Arg or Lys residue within the polyprotein. The 39, 15 and 44 kDa adhesins of PrtK all exhibit high homology with the 44, 15, 17 and 27 kDa adhesins encoded by prtR, particularly the 15 kDa proteins which are identical. The cell-associated proteinase-adhesin complex, designated PrtR-PrtK, is therefore composed of the two gene products, the mature PrtR (160 kDa) and mature PrtK (163 kDa) that are further proteolytically processed (most likely autolytically) to release proteinase and adhesin domains that remain non-covalently associated. The fully processed PrtR-PrtK complex comprises the cysteine proteinases PrtR45 and PrtK48 and seven sequence-related adhesin molecules, PrtR44, PrtRIS, PrtR17, PrtR27 and PrtK39, PrtK15 and PrtK44. We propose that this proteinase-adhesin complex is a major virulence factor for P. gingivalis
Funder
Australian National Health and Medical Research Council project
Australian National Health and Medical Research Council Dental Postgraduate Scholarship for P.S.B.
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献