Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus ETH 7451

Author:

Fernández Marisol1,Sánchez Jesús1

Affiliation:

1. Area de Microbiologı́a, Departamento de Biologia Funcional, Facultad de Medicina, 33006 Oviedo, Spain1

Abstract

The presence and significance of developmentally regulated nucleases in Streptomyces antibioticus ETH 7451 has been studied in relation to the lytic processes occurring during differentiation. The cell-death processes have been followed in surface cultures by a propidium iodide viability assay. This has allowed the visualization of dead (membrane-damaged, red fluorescent) and live (membrane-intact, green fluorescent) mycelium during development, and has facilitated the analysis of the role of nucleases in these processes. A parallel activity-gel analysis showed the appearance of 20–22 kDa, 34 kDa and 44 kDa nucleases, the latter appearing only when aerial mycelium is formed. The appearance of these nucleases shows a remarkable correlation with the death process of the mycelium during differentiation and with chromosomal DNA degradation. The 20–22 kDa enzymes are possibly related to the lytic phenomena taking place in the vegetative substrate mycelium before the emergence of the reproductive aerial mycelium, whereas the function of the 44 kDa nuclease seems to be related to the sporulation step. The 20–22 kDa nucleases require Ca2+ for activity and are inhibited by Zn2+. The nucleases are loosely bound to the cell wall from where they can be liberated by simple washing. Conceivably, these enzymes work together and co-ordinate to achieve an efficient hydrolysis of DNA from dying cells. The results show that the biochemical reactions related with the lytic DNA degradation during the programmed cell death are notably conserved in Streptomyces. Some of the features of the process and the biochemical characteristics of the enzymes involved are analogous to those taking place during the DNA fragmentation processes in eukaryotic apoptotic cells.

Publisher

Microbiology Society

Subject

Microbiology

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3