The symbiotic phenotypes of exopolysaccharide-defective mutants of Rhizobium sp. strain TAL1145 do not differ on determinate- and indeterminate-nodulating tree legumes

Author:

Parveen Nikhat12,Webb David T.3,Borthakur Dulal2

Affiliation:

1. Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA

2. Department of Plant Molecular Physiology, University of Hawaii, Honolulu, HI 96822, USA

3. Department of Botany, University of Hawaii, Honolulu, HI 96822, USA

Abstract

Three classes of exopolysaccharide (EPS) defective mutants were isolated by Tn3Hogus -insertion mutagenesis of Rhizobium sp. strain TAL1145, which nodulates tree legumes. The class I and class III mutants produced 10-22% of the EPS produced by TAL1145 and appeared partially mucoid while the class II mutants formed small, opaque and non-mucoid colonies. Size-fractionation of the soluble EPSs made by these mutants in the culture supernatant indicated that the class I and the class III mutants produced reduced levels of both highland low-molecular-mass EPSs while the class II mutants lacked both these EPSs but produced a small amount of a medium-molecular-mass anthrone-reactive EPS. The succinyl and acetyl substituents observed in the TAL1145 EPS were absent in the EPS of the class II mutants. When examined under UV, the class I and class III mutants grown on Calcofluor-containing YEM agar showed dim blue fluorescence, compared to the bright blue fluorescence of the wild-type strain, whereas the class II mutants did not fluoresce. While the dim blue fluorescence of the class III mutants changed to yellow-green after 10 d, the fluorescence of the class I mutants did not change after prolonged incubation. Unlike the EPS-defective mutants of other rhizobia, these mutants did not show different symbiotic phenotypes on determinate- and indeterminate-nodulating tree legumes. The class I and the class III mutants formed small ineffective nodules on both types of legumes whereas the class II mutants formed normal nitrogen-fixing nodules on both types. The genes disrupted in the class I and class III mutants form a single complementation group while those disrupted in the class II mutants constitute another. All the three classes of EPS-defective mutants were located within a 10.8 kb region and complemented by two overlapping cosmids.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3