Analysis of a Rhizobium leguminosarum gene encoding a protein homologous to glutathione S-transferases

Author:

Alkafaf Najláa K. Tawfiq1,Yeoman Kay H.1,Wexler Margaret1,Hussain Haitham1,Johnston Andrew W. B.1

Affiliation:

1. School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK

Abstract

A novel Rhizobium leguminosarum gene, gstA, the sequence of which indicated that it was a member of the gene family of glutathione S-transferases (GSTs), was identified. The homology was greatest to the GST enzymes of higher plants. The Rhizobium gstA gene was normally expressed at a very low level. The product of gstA was over-expressed and purified from Escherichia coli. It was shown to bind to the affinity matrix glutathione-Sepharose, but no enzymic GST activity with 1-chloro-2,4-dinitrobenzene as substrate was detected. gstA encoded a polypeptide of 203 amino acid residues with a calculated molecular mass of 21990 Da. Transcribed divergently from gstA is another gene, gstR, which was similar in sequence to the LysR family of bacterial transcriptional regulators. A mutation in gstR had no effect on the transcription of itself or gstA under the growth conditions used here. Mutations in gstA and gstR caused no obvious phenotypic defect and the biological functions of these genes remain to be determined.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3