Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida

Author:

Kappler Oliver12,Janssen Peter H.2,Kreft Jan-U.1,Schink Bernhard1

Affiliation:

1. Fakultät für Biologie, Universität Konstanz, D-78434 Konstanz, Germany

2. Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany

Abstract

The anaerobic bacterium Holophaga foetida can metabolize the methyl groups of methoxylated aromatic compounds either to acetate or to dimethyl sulphide. The effects of this metabolic flexibility were investigated under conditions of excess; substrate (batch culture) and substrate limitation (chemostat culture). Growth yield data suggest that transfer of the methyl groups to sulphide, in contrast to the homoacetogenic transfer to CO2, was not coupled to energy conservation. Under conditions of excess substrate, methyl groups were quantitatively transferred to sulphide. Growth yields decreased but growth rates increased upon the addition of sulphide during exponential growth in pH- and sulphide-regulated batch cultures. From the measured growth yields, the Gibbs free energy dissipation of catabolism plus anabolism () was calculated using stoichiometric equations incorporating biomass formation (macrochemical equations). The observed increase in growth rate correlated well with an increase in , suggesting a relationship between growth kinetics and growth energetics. During steady-state growth in pH- and sulphide-regulated chemostat culture, a considerable fraction of the methyl groups was converted to acetate, despite the presence of sulphide. This resulted in similar growth yields and correspondingly similar values in the presence and absence of sulphide. Apparently, H. foetida uncouples catabolism and anabolism in batch culture under conditions of excess substrate to a greater extent than in the chemostat under substrate limitation, by transferring the methyl groups quantitatively to sulphide and thereby dissipating the Gibbs free energy change of the methyl transfer. The physiological significance of these findings could be that H. foetida adjusts the energetics of its metabolism to the growth conditions (i) to maximize the growth rate if substrate is available in excess or, (ii) to maximize the growth yield if substrate is limiting.

Publisher

Microbiology Society

Subject

Microbiology

Reference30 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3