Enzymological and physiological consequences of restructuring the lipoyl domain content of the pyruvate dehydrogenase complex of Escherichia coli

Author:

Guest John R.1,Attwood Margaret M.1,Machado Rosane S.1,Matqi Khalil Y.1,Shaw John E.1,Turner Sarah L.1

Affiliation:

1. The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK

Abstract

The core-forming lipoate acetyltransferase (E2p) subunits of the pyruvate dehydrogenase (PDH) complex of Escherichia coli contain three tandemly repeated lipoyl domains although one lipoyl domain is apparently sufficient for full catalytic activity in vitro. Plasmids containing IPTG-inducible aceEF-IpdA operons which express multilip-PDH complexes bearing one N-terminal lipoyl domain and up to seven unlipoylated (mutant) domains per E2p chain, were constructed. Each plasmid restored the nutritional lesion of a strain lacking the PDH complex and expressed a sedimentable PDH complex, although the catalytic activities declined significantly as the number of unlipoylated domains increased above four per E2p chain. It was concluded that the extra domains protrude from the 24-meric E2p core without affecting assembly of the E1p and E3 subunits, and that the lipoyl cofactor bound to the outermost domain can participate successfully at each of the three types of active site in the assembled complex. Physiological studies with two series of isogenic strains expressing multilip-PDH complexes from modified chromosomal pdh operons (pdhR-aceEF-IpdA) showed that three lipoyl domains per E2p chain is optimal and that only the outermost domain need be lipoylated for optimal activity. It is concluded that the reason for retaining three lipoyl domains is to extend the reach of the outermost lipoyl cofactor rather than to provide extra cofactors for catalysis.

Publisher

Microbiology Society

Subject

Microbiology

Reference32 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3